

Preliminary Results from a Pan-CMIP OSSE

Daniel Feldman¹

Bill Collins^{1,2}, Bruce Wielicki³, Yolanda Shea³, Constantine Lukashin³ May 11, 2016

CLARREO Fall Science Team Meeting

- ¹ Lawrence Berkeley National Laboratory, Earth Sciences Division
- ² University of California-Berkeley, Department of Earth & Planetary Science
- ³ NASA Langley Research Center

Outline

- Update on Strengthening International Collaborations.
- Overview and goals of a pan CMIP OSSE capability.
- Pan CMIP OSSE development update.
 - First phase models.
 - Vertical interpolation.
- Preliminary results from time-series analysis
- Summary.
- Discussion.

International Collaborations

- Building off PNAS (LBNL), GRL (Umich), and JC (Umich) papers on science value of surface emissivity measurements, collaboration with UK partners strengthened through a funded NERC proposal.
- Investigation will analyze CIRCCREX data over Greenland and the Denmark Strait and retrieve far-IR surface emissivity over ice-sheet and ocean.
 - Compare with calculations in emissivity database.
- Investigation will quantify ice-emissivity feedback within models.
 - Preliminary diagnosis using kernel techniques for CESM1.2 is +0.07 W/m²/K (~1/3 ice albedo feedback), but is state-dependent and will decrease with increasing H₂O.
 - Framework for online feedback analysis within CESM has been built.
- Investigation will improve understanding of the controls on the polar radiative energy budget.

Pan CMIP5 OSSE Capability

- •At Spring 2015 CLARREO meeting, Berkeley group received guidance to focus on development of a pan CMIP5 OSSE capability in support of CLARREO.
- •Berkeley group will build off current OSSE, develop model-agnostic OSSE capability for SW reflectance and LW radiance for CMIP5 and CMIP6 models.

•Goals:

- Determine relationship between model ECS and pan-spectral trends.
- Establish pan-spectral variability across a broad range of climate models, with an eye towards observational constraint.
- Support Decadal Survey 2017-2027 discussion.

The CMIP5 climate simulation protocol

- The Coupled Model Intercomparison Protocol (CMIP5) is the basis for AR5.
- It includes a new set of simulations for the historical record: 1850 2005.

Progress Report

- •First Phase Models Overview.
- Data Acquisition.
- Horizontal Interpolation.
- Vertical Interpolation.
- Preliminary Results.
- Execution on NAS facilities.

First Phase Models

- •Model vertical-coordinate idiosyncrasies and data availability from Earth System Grid and mirroring servers have limited the feasible range of models for the first phase of the pan CMIP OSSE.
 - First phase contains nearly complete range of diagnosed ECS across full ensemble.

Model Name	Diagnosed ECS (°K/2xCO2)
CESM1-CAM5	4.10
CanESM2	3.69
MIROC-ESM	4.67
MIROC5	2.72
MRI-CGM3	2.60
MRI-ESM1	2.11
inmcm4	2.08

Data Acquisition

- •Thermodynamic and condensate profiles downloaded from Earth System Grid and its mirrors.
- •MODIS 16-day averages of 7 bands of BRDF and albedo, and 6 bands of emissivity gathered for 2003-2014.
- •Model-agnostic NCL and Matlab routines developed to concatenate fields into appropriate input files for OSSE.
 - If you expect to work with multiple CMIP5 or CMIP6 fields, these routines will save you time.

Boundary Condition Horizontal Interpolation

- •Key component of Berkeley's pan-spectral OSSE is surface boundary conditions built off of MODIS land-surface products.
- •Gridding required for MODIS Climate Modeling Grid (CMG) data for each model's horizontal resolution.
 - Highly computationally-intensive, but parallelizable.

Vertical Interpolation

- •OSSE is now model-agnostic for horizontal resolution, but it is less flexible for vertical resolution and inflexible on using layers, instead of levels.
- •Vertical interpolation routines are required for thermodynamic and condensate profiles.
 - Routines need to be mathematically stable and mass-conserving with no edge cases.
 - Central challenge is that enormous heterogeneity used for vertical grids in climate model output.

Heterogeneous Vertical Grids Used in CMIP5

- Input to OSSE is CMIP5 climate model output assessed in the IPCC AR5.
- Difficulties in building complete thermodynamic + cloud profiles for OSSE from CMIP5:
 - Hi-res. thermodynamic profiles mapped to lo-res mandatory pressures
 - Hi-res. Cloud data is left on native model grid (differs model to model)
- We tried two alternates for interpolating these data to common grid:
 - Interpolate clouds to mandatory pressures
 - Interpolate thermodynamic profiles back to native model clouds
- Both interpolation schemes were strictly mass conservative.
- 1st scheme failed, 2nd scheme worked, and we are using 2nd scheme.

Vertical Interpolation Interpolating Clouds to Mandatory Levels -- Reason for Failure

•Thermodynamic profiles = unphysical fill values where surface pressure less than mandatory level pressure in CMIP5 archive.

Model Differentiation: MIROC-ESM (4.7°) - MRI-ESM1 (2.1°)

- •MIROC-ESM and MRI-ESM1 span the range of ECS diagnosed for CMIP5.
- •Under RCP8.5, perfect broadband measurements starting in 2005 can begin to exclude one of these models with 15 years' of data.

Model Differentiation: MIROC-ESM (4.7°) - CanESM2 (3.6°)

- •MIROC-ESM and CanESM2 differ in ECS by 1°.
- •Under RCP8.5, perfect broadband measurements starting in 2005 can begin to exclude one of these models with 20-25 years' of data.

Model Differentiation: T85 CCSM3 (2.7°) - T31 CCSM3 (2.3°)

- •Two resolutions of CCSM3 differ in ECS by 0.4°.
- •Under RCP8.5, perfect broadband measurements starting in 2005 can begin to exclude one of these models with 20-25 years' of data.

TOA Fluxes

- •CMIP-model agnostic OSSE is mechanically working on NAS systems.
- •Preliminary output of fluxes from CAM RT and MODTRAN show agreement in LW within 3 W/m² (clear-sky) and 10 W/m² (all-sky).
- •More debugging on the timing system is still needed for the SW.

Benchmark Testing

- •Multiple scattering line-by-line radiative transfer calculations (LBLRTM+CHARTS) coupled to a database of ice cloud optical properties enable versatile spectral flux calculations.
- •NERSC and NAS resources take advantage of embarrassingly parallel nature of these calculations. Burst-buffer will address disk-limitations that hinder scaling.

Additional Opportunities with a Pan-CMIP OSSE

- •The pan-CMIP OSSE produces radiometrically-rigorous radiative transfer calculations across the CMIP, thereby enabling additional science.
 - Realistic evaluation of the spatial distribution of radiative forcing from greenhouse gases and aerosols across a multi-model ensemble in realistic all-sky conditions.
 - Goal is to contribute to more realistic assessment of forcing for IPCC AR6.
- •Recent 1M CPU-hour NASA supercomputing resources award for runs on Pleiades can enable this science.

Summary

- International collaboration with Imperial College and UMich partners yielding exciting science in the far-IR.
- A fully agnostic pan CMIP OSSE is now working.
 - Some additional testing and benchmarking still needed.
 - Preliminary time-series analysis suggests that CLARREO-like measurements will take less than 15 years' to exclude a model where ECS is off by 2.5°K/2xCO₂.
 - Some debugging is still necessary in the SW.
 - Integration of SW and LW PCRTM will then proceed.
- Additional scientific opportunities enabled by the pan-CMIP OSSE, especially for IPCC AR6.

Acknowledgements:

This research was supported by NASA grants NNH11AQ75I and NNH14ZDA001N-ACSCS. NERSC and NASA High-End Computing grants provided computational resources.

